

Yaroslav Kokhan

H. S. Skovoroda Institute of Philosophy of the NAS of Ukraine
Department of Logic and Science Methodology

Kyiv

FUNCTIONAL LOGIC
as a generalization of
PREDICATE LOGIC

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Predicate logic is a central and main structural part of the whole logic

Actual and outdated structural parts of logic:
• Syllogistics [outated]
• Propositional logic
• Logic of classes [outated]
• Predicate logic

Alternatives to predicate logic:

• Leśniewski’s Ontology

• Church’s λ-theory and Curry’s combinatory logic

• Uyomov’s system of «properties, things, and relations»

Main and basic notions of predicate logic: a particular (an individual), equality, a sequence, a predicate.

• Particulars (individuals): atomic entities, which have no inner structure.
Notions: free individual variables ai, bi, ci (i ⩾ 0).
• Equality and nonequality: logical relations.

The primitive theory of particulars and equality: atomic formulas are sequences of the form v = u; axioms:
(=1) a = a;
(=2) a = b → b = a;
(=3) a = b → (b = c → a = c).

• Sequences: empty and finite progressions of any objects. Every well-ordered expression is a sequence.
• Predicates: two notions.

1. Predicates as truth functions: the predicate F (n), or F (x1, ..., xn), has the type A1 × ... × An ↦ {t, f},
where Ai = {xi}, t = truth, f = falsehood.

2. Predicates as relations: the predicate R (n), or R (x1, ..., xn), has the type A1 × ... × An, where Ai = {xi}.
This means that for every R (n) there exists a unique F (n) such that

R (a1, ..., an) ↔ F (a1, ..., an) = t
for every ai ∈ Ai.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Predicates as functions. Generalization of the notion of a predicate

1. • A predicate, being a truth function, is a partial case of
2. • a map, i.e., a one-valued function.
3. • A partial map is the case of an at most one-valued function.
 • A multimap is a many-valued function.
4. • A partial multimap is a non-negative-valued function,
 i.e., is the general case of a function.

Predicate
F (x1, ..., xn) = t/f
t/f = F (x1, ..., xn)

Type: A1×...×An ↦ {t, f}

Map
f (x1, ..., xn) = x0

x0 = f (x1, ..., xn)
Type: A1×...×An ↦ A0

Multimap
x0 ≈ f (x1, ..., xn)

Type: A1×...×An ⤇ A0

Partial multimap
x0* ≈ f (x1, ..., xn)

Type: A1×...×An A0

Partial map
f (x1, ..., xn) = x0*
a0* = f (x1, ..., xn)

Type: A1×...×An ↠ A0

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Representation as the ultimate generalization of equality

Equality ‘t = s’ presupposes that both equated objects t and s are unambiguously represented (specified). But in
general, this is not the case.

Examples:
1. The usual inscription ‘± 2 = √4’ is not correct because the expression ‘√4’ is two-valued so is umbiguous and
is not a term. The correct inscriptions: ‘2 ≈ √4’ and ‘–2 ≈ √4’.
2. The correct specification of a circle with the center in the origin is y ≈ √r2 – x2, but not y = √r2 – x2, because
this “equation” has the single value only in two points: x = –r and x = r, and has no value for x < –r and x > r,
but in the open interval (–r; r) has two values y and –y for every argument x.

So, if the object s is represented (specified, described) ambiguously, we can write only ‘t ≈ s’, but not ‘t = s’. In
any case, the object t must be specified unambiguously.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Definition of equality and nonequality

There is a common opinion, that equality can be defined in predicate logic of the 2nd order by the Leibniz
criterion: a = b ↔ ∀P (P (a) ↔ P (b)). But this “definition” is refuted by any model M = <M; Ω>, where a, b ∈ M,
a ≠ b, and Ω contsists of the 1-ary predicates such that every of them either is satisfied by both a and b, or is
not satisfied by both a and b.

In fact, equality and nonequality can be defined via representation as follows:
t = s ≡Df t ≈ s ∧ ∀r ∀o (r ≈ s → (o ≈ s → r ≈ o)),
t ≠ s ≡Df t ≉ s ∧ ∀r ∀o (r ≈ s → (o ≈ s → r ≈ o)),

where t, r, o are terms, i.e., they are represented unambiguously, s is a quasiterm, i.e., it can be represented
either ambiguously or unambiguously, and logical relation of non-representing ≉ is obviously defined as
follows:

t ≉ s ≡Df ¬ (t ≈ s).
Hence equality and non-equality are not complements (negations) to each other, and are not, contrary to common
opinion, simply identity and nonidentity. Uniformity ≖, defined as follows:

t ≖ s ≡Df t ≈ s ∧ s ≈ t
is also can be candidate to identity relation. Non-uniformity (non-identity?) is defined as follows:

t ≖ s ≡Df t ≉ s ⋁ s ≉ t.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Function and functional values. Churchian symbolism

Structure of representation formulas (in particular, equations and identity formulas):
«a0 is a value of the function f (n) on arguments a1, ..., an»

a0 ≈ f (a1, ..., an)

a value* | representation | a value of f (n) on a1, ..., an

a0 ≈ (f (n) (a1, ..., an))

Hence, ‘a ≈ f (0)’ means: «a is the function f (0)», but ‘a ≈ (f (0))’ means: «a is a value of the function f (0)».
Parentheses to denote values of functions was introduced by Alonzo Church in:

Church, A. (1941). The Calculi of Lambda-Conversion. Annals of Mathematics Studies, 6. Princeton: Princeton
University Press, London: Humphrey Milford Oxford University Press (reprinted, New York: Kraus Reprint Corp.,
1965). P. 1.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Choice functions

If the function f (n) is ambiguous, the expression ‘(f (n) (a1, ..., an))’ is ambiguous too for all a1, ..., an. A choice
function is every function such that it selects one of values of every given ambiguous constant function
f (n) (a1, ..., an), in particular f (0), if this constant function have values, and denotes nothing in the other case:

chi
(2) (f (n) (a1, ..., an), j) ↦ (f (n) (a1, ..., an)) j

 some ith choice function choice index a value* of f (n) (a1, ..., an)

For brevity, we can shorten ‘(f (n) (a1, ..., an))’ to ‘f (a1, ..., an)’ and shorten ‘(f (n) (a1, ..., an)) j ’ to ‘f j (a1, ..., an)’.
We call terms of the form ti, where i is a choice index, marked. The expression ‘ti’ means: «the ith t-particular (t-
individual), if it exists». We can quantify marked expressions in two following ways:

∀f 2 (f 2 ≈ g) → f 1 ≈ g
∀f 1* (f 1* ≈ g) → f 1 ≈ g

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Predicates as relations. Resolution of a relation
Every relation in any atomic sentence

R (a1, ..., an)
has the single logically selected argument (and hence the selected argument place, or valency). In many
natural languages, this selected argument is denoted by the grammar subject or the whole subject group. If we
change the subject, the relation that the sentence is talking about will also change.
 The relation without one its argument is no longer a relation:

a1 R (, ..., an)
but is the representation of the selected argument by some function (with or without arguments) as its value:

a1 ? (fR
(n) (a2, ..., an)).

And since there can be more than one value of the function under question, then the connetction between
every value a1 and the function with arguments fR

(n) (a2, ..., an) cannot be equality, but can be only
representation:

a1 ≈ (fR
(n) (a2, ..., an)).

So, we can resolve any relation with respect to some its argument, obtaining the functional representation:

R (a1, a2, ..., an) ↔ a1 ≈ (fR
(n) (a2, ..., an)).

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

The structure of a relation. Two kinds of relations

We should divide relations on logical and extralogical (descriptive, contensive, contentfull).
Logical relations are representation, non-representation, and their partial cases: uniformity (identity), non-
uniformity (non-identity), equality and nonequality.
The structure of a relation:

 logical relation descriptive relation

general case: s0 ◉ <s1, ..., sn> s0 ◉ (f (n) (s1, ..., sn))

partial case: s0 ◉ s1 / s0 ◉ <s1> s0 ◉ (f (1) (s1))
limit case: s0 ◉ ★ s0 ◉ (f (0))

where s0, ..., sn are terms, ◉ can be ≈, ≉, =, ≠, ≖, ≖, and ‘★’ is the empty letter, which points the absence of any
object in its position. ‘s0 ≈ ★’ means: «There is s0», so can be treated as «s0 exists». A sentences of the forms
‘★ ≈ s0’ and ‘★ ≈ (s0)’ are subjectless (like Czech «Prší» ≡ Ukrainian «Дощить»).
Note that ‘f (n) ≈ g(m)’ («the function f (n) is the function g(m)») is a partial case of ‘s0 ◉ s1’, thus is a logical relation.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

The difference between predicate and functional logic

Functional logic and predicate logic differ from each other linguistically, deductively, and semantically.
1. Formal languages.

predicate variables
individual (particular) variables

propositional variables
functional variables

The notion of a variable is sufficient for predicate logic, but functional logic requires
1) more general notions of a term and a quasiterm as a structured expressions and
2) the distinction between formulas and quasiformulas.
A free variable is a limit case of a term, a bound variable is a limit case of a quasiterm. A term is a formal
equivalent of a name (denoting prase) and contains no bound variables, a quasiterm either contains bound
variables or, in other case, is a term. The difference between formulas and quasiformulas are analogous.
ai, (fi) j, (fi

(n) (a1, ..., an)) j, are quasiterms and terms,
xi, (fi) j, (fi

(n) (a1, ..., an)) j, are quasiterms and terms.

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

Predicate logic
Functional logic

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

The difference between predicate and functional logic

2. Deduction.
Axioms

0) Propositional axioms:
 (1) A → (B → A).
 (2) (A → (B → C)) → ((A → B) → (A → C)).
 (3) (¬A → ¬B) → ((¬A → B) → A).

1) Core functional axioms for logics of the 1st order (in simplified symbolism):

 (a) ∀f 1* (f 1* ≈ g) → f 1 ≈ g.
 (a1-2) ¬ ∀g1* (f 1* ≉ g1*) ↔ f 1 ≈ g.
 (b) f 1 ≈ f 1.
 (c) f 1 ≈ g1 → (f 1 ≈ h → g1 ≈ h).
 (c1) f 1 ≈ g → (∀g1* (g1 ≈ h) → f 1 ≈ h).
 (d) ∀h1* (h1 ≈ f → h1 ≈ f 1) → (f 1 ≈ g → ∀f 1* (f 1* ≈ g)).

FUNCTIONAL LOGIC as a generalization of PREDICATE LOGIC

The difference between predicate and functional logic

2. Deduction.
Axioms

2) Axioms for descriptions (in simplified symbolism):

 (e) ∀f 1* (f 1* ≈ g) → f 1(f 1 ≈ h) ≈ g.
 (e1) ¬ ∀f 1* (f 1* ≉ g) ↔ f 1(f 1 ≈ g) ≈ g.
 (e2) f 1(f 1 ≈ g) ≈ h ⋁ f 1(f 1 ≈ g) ≉ h → f 1 ≈ g.

3) Axioms of functional levels (in simplified symbolism):

 (a1-2λ) ¬ ∀g1* (f 1* ≉ (g1*)) ↔ f 1 ≈ (g).

 (λ) f λ ≈ gλ → (h1* ≈ f → h1* ≈ g).

 (λ1) f 1 ≈ g → (gλ ≈ h → f 1 ≈ (h)).

 (λ2) f 1 ≈ (h1) → (gλ ≈ h1 → f 1 ≈ g).

 (λ3) f 1 ≈ h → (g1 ≈ h → ((h1 ≈ f ↔ h1 ≈ g) → f λ ≈ gλ)).

Thanks for the attention!

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14

